$AUh\Y a\Uh]WU``DfcWYYX]b[g`cZ`h\Y`7Ua\Vf]X[YD\]`cgcd\]WU``GcW]Yhm$

@cc1KDbb[~;}æ|•È&æ{ à;ãå*^È[;*ĐÚÙÚ

Όåää[}æ⋈ႆ•^\çä&^•¼-[¼Mathematical Proceedings of the Cambridge Philosophical Society:

Ò { æi|Áæ|^!c•KÁ<u>Ô|ã&\Á@^!^</u> Ù`à•&!ã]cã[}•KÁ<u>Ô|ã&\Á@^!^</u> Ô[{ {^!&āæ|Á!^]!á}c•KÁ<u>Ô|ã&\Á@^!^</u> V^!{•Á[-Á`•^AKÁ<u>Ô|ã&\Á@^!^</u>

5 bchY cb U h \ YcfY a 'cZ'5f a UbX'6cfY'

ÒÈÁΘĖÁΖ^^ { æ }

Tæc@^{æċä&æ|ÁÚ¦[&^^åi}*•Á[-Ác@^ÁÔæ{ài}å*^ÁÚ@i][•[]@i&æ|ÁÙ[&i^c^hbAX[]~{^ÁlIAP+^`|^ÁFJÍÌÉ}]]ÅHJÎ ÉÁHJÌ

ÖUMÁF€ÈF€FÏÐÙ€H€Í€€IF€€€HHÎFGÉÁÚ `à|ã•@^åÁ[}|ã}^KÁGIÁU&c[à^¦ÁG€€Ì

@]b_'hc'h\]g'Ufh]W'Y.'@cc] KDD [` | }æ|•È&æ { à | åå * ^ È [| * Dæá { á { c@ã•Áæ¦cã&|^KÁ

A NOTE ON A THEOREM OF ARMAND BOREL

By E. C. ZEEMAN

Received 23 August 1957

The theorem under discussion is the one which yields the cohomology of the classifying space of a Lie group. Let E be a canonical spectral algebra for cohomology over a field K with trivial E_{∞} term, and let $E = \sum_{p} E_{2}^{p,0}$, $E = \sum_{q} E_{2}^{q,q}$ (the algebras corresponding to the cohomologies of base and fibre of a fibre space).

Theorem 1. If $F = \Lambda(x_1, ..., x_m)$, an exterior algebra on homogeneous elements of odd degree, then

(a) homonomonio transarrosimo alamento ne ne can he chosen such that

 $F = \Lambda(y_1, ..., y_m)$, and degree $y_i = degree x_i$;

Definition of E(s), an elementary spectral algebra over K of odd degree s. Let $F(s) = \Lambda(\eta)$, η of degree s, $B(s) = K[\zeta]$, ζ of degree s+1, and let $E(s)_2 = B(s) \otimes F(s)$. Therefore if K is not of characteristic 2, the algebra $E(s)_2$ is freely generated by ζ and η ,

 $d_{s+1}(\zeta^k\otimes 1)=0$ and $d_{s+1}(\zeta^k\otimes \eta)=\zeta^{k+1}\otimes 1$. Consequently, for r>s+1, $d_r=0$ and $E(s)_r=E(s)_\infty=$ trivial, the only non-zero term in the bigrading being $E(s)^0_\infty=K$.

By construction $f: \overline{F} \cong F$. Therefore $f: \overline{B} \cong B$, qua graded groups, by the comparison theorem ((2), Dual corollary). But f is an algebra homomorphism, so that $f: \overline{B} \cong B$ is an algebra isomorphism. Consequently $B = K[z_1, ..., z_m]$.

Proof of Theorem 2. We recall that $F = \Delta(y_1, ..., y_m)$ means that the monomials $y_1, y_2, \dots, y_m = 0$ multiple part form and $y_1, y_2, \dots, y_m = 0$

additive base for the vector space F over K. This is more general than an exterior algebra, since it may happen that $y_i^2 \neq 0$, as, for example, in the cohomology ring modulo 2 of the rotation group R(3).

Since K is of characteristic 2 we may define elementary spectral algebras of even degree in exactly the same way as those of odd degree. For each i there is as before a spectral sequence homomorphism $f^i: E(s_i) \to E$, mapping η_i to y_i and ζ_i to z_i , only this time it is not strictly an algebra homomorphism, because although $n^2 = 0$, we may have