

ТНЕ СЕМЕРАЦСЕВ ВОІМСЛЕС СОМІЕСТИВЕ

The above theorem was proved for $n \ge 7$ by Stallings [2]. His proof can be adapted to cover the cases n = 5, 6 by means of the following lemma (the proof of which is given in [3]).

LEMMA. Suppose M^n is a q-connected combinatorial n-manifold, where $q \leq n-3$. Suppose A^q is a q-subcomplex, and B a collapsible subcomplex, both contained in the interior of M^n . Then there exists a collapsible subcomplex C in the interior of a suitable subdivision σM^n of M^n , such that $C \supset \sigma(A^q + B)$ and $\dim(C - \sigma B) \leq q+1$.

The lemma is useful in a variety of contexts. For the application that we need here, choose A^{q} to be the *q*-skeleton of M^{n} and *B* to be a point; then a regular neighbourhood of *C* is an *n*-ball containing