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THEOREM. If a combinatorial n-manifold has the hotnotopy-type of 
an n-sphere then it is homeomorphic to an n-sphere, provided n^5. 

The above theorem was proved for n ^ 7 by Stallings [2]. His proof 
can be adapted to cover the cases n = 5, 6 by means of the following 
lemma (the proof of which is given in [3]). 

LEMMA. Suppose Mn is a q-connected combinatorial n-manifold, 
where q^n — 3. Suppose Aq is a q-subcomplex, and B a collapsible 
subcomplex, both contained in the interior of Mn. Then there exists a 
collapsible subcomplex C in the interior of a suitable subdivision aMn 

of Mn, such that CD<r(A*+B) and dim(C-crB) £q + l. 

The lemma is useful in a variety of contexts. For the application 
that we need here, choose A q to be the g-skeleton of Mn and B to be 
a point; then a regular neighbourhood of C is an w-ball containing 
Aq. Therefore if there are complementary skeletons of Mn with co-
dimension at least 3, we can embed them in balls, and so, by expand
ing one of the balls, cover Mn by two balls. The theorem follows as in 
[2, Lemma 3]. Complementary skeletons of codimension at least 3 
exist if and only if n^5. 

In dimensions w = 3, 4 there is not quite enough elbow room for the 
proof to work, and so these two dimensions are the only outstanding 
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