Mathematical Proceedings of the Cambridge Philosophical Society

http://journals.cambridge.org/PSP

Additional services for **Mathematical Proceedings of the Cambridge Philosophical Society:**

Email alerts: <u>Click here</u> Subscriptions: <u>Click here</u> Commercial reprints: <u>Click here</u> Terms of use : <u>Click here</u>

On Contractible Open Manifolds

D. R. McMillan and E. C. Zeeman

Mathematical Proceedings of the Cambridge Philosophical Society / Volume 58 / Issue 02 / April 1962, pp 221 - 224 DOI: 10.1017/S0305004100036434, Published online: 24 October 2008

Link to this article: http://journals.cambridge.org/abstract S0305004100036434

How to cite this article:

D. R. McMillan and E. C. Zeeman (1962). On Contractible Open Manifolds. Mathematical Proceedings of the Cambridge Philosophical Society, 58, pp 221-224 doi:10.1017/S0305004100036434

Request Permissions : Click here

[221] ON CONTRACTIRE F. ODEN MANTEOLDS BY D. R. MCMILLAN AND E. C. ZEEMAN Received 8 September 1961 By an open manifold we mean a non-compact space, that is triangulable by a countable complex which is a combinatorial manifold without boundary (see next santion) The obvious example is Ruelidean a-space, which we denote by Rn We prove THEOREM. If M^n is a contractible open manifold, then $M^n \times E^2$ is piecewise linearly* manna to En+2 ,

_	
ł5	
	For example, think of a simple closed curve (of codimension 2) in a solid torus,
	Similarly one can construct an <i>n</i> -sphere S^n (of codimension $n+1$) in $S^1 \times B^{2n}$ that is
	nongential and man desired here have a contraction of the second desired the second desired the second se
_	

a pipe round the S^1 . For a more detailed discussion, see Zeeman (12).

In a contractible open manifold, of course, every subspace is inessential. If the manifold is not a Euclidean space then it contains a finite combinatorial subspace of codimension at least one which is inessential but non-trivial (see Lemma 4 and §3). In most examples there is such a subspace which is geometrically significant. For

LEMMA 2. Let M be a finite combinatorial manifold. Given a combinatorial subspace $r^{+1}X \simeq 0$ in M° , then there exist combinatorial subspaces rY, 2^rZ in M° such that $X \subset Y \searrow Z$.

is simple. Y is a cone on X mapped into general position, with singularities of codimension 2r. We can collapse Y onto the (2r-1)-codimensional subcone that contains these singularities. The last step down to codimension 2r is achieved by piping the middles of the singularities over the edge of the cone.

LEMMA 3. Suppose $\{M_i\}$, $i = 1, 2, ..., is a sequence of finite combinatorial n-manifolds, such that each <math>M_i$ is a combinatorial subspace of M_{i+1}° , and $M_i \simeq 0$ in M_{i+1}° . If $r+1X \subset M_i$,

נ נ נ נ

223

D. R. MCMILLAN AND E. C. ZEEMAN

Now T_i is of codimension 3 in $M_i \times D_i$, which is of dimension n+2. Therefore by Lemma 3, T_i is trivial in $(M_{i+n} \times D_{i+n})^\circ$. But $T_i \nearrow M_i \nearrow M_i \times D_i$. Therefore by Lemma 1, there exists an (n+2)-ball B_i , such that

$$M_i \times D_i \subset B_i \subset (M_{i+n} \times D_{i+n})^{\circ}.$$

Taking the union over all i,

$$M \times E^2 \subset \bigcup B_i \subset M \times E^2.$$

Hence $M \times E^2 = \bigcup_{i=1}^{\infty} B_i = \bigcup_{j=1}^{\infty} B_{jn}$, which is the union of a sequence of balls each in the

interior of its successor, and which therefore $= E^{n+2}$ by Lemma 4.

2 - 1	
}	
<u> </u>	
	(1) CURTIS M. L. Cartesian products with intervals Proc. American Math. Soc. 12 (1961)
	(1) County, M
	(2) Metric B A note on some contractible 4 manifolds 4 ma of Math 72 (1061) 921 929
	(2) MAZOR, D. A hote on some contractible 4-maximulas. Ann. Of Math. 13 (1901), 221-220.
	(3) MCMILLAN, D. R., Jr. Cartesian products of contractible open mannoids. Buil. American
	Main. Soc. 07 (1961), $510-514$.
÷.	
•	
- í	
-) . <i>1</i>	
<u> </u>	
10	
it is a second	
{ * *	
M	
<u> </u>	
-	

224