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Abstract

This course will be a whirlwind tour through representation theory, a major branch

of modern algebra. We being by considering the symmetry groups of the Platonic solids,

which leads naturally to the notion of a reection group and its associated root system.

The classi�cation of these reection groups gives us our �rst examples of quivers (= direct

graphs). Though easy to de�ne, we’ll see that the representation theory associated to quivers

is very rich. We will use quivers to illustrate the key concepts, ideas and problems that

appear throughout representation theory. Coming full circle, the course will culminate with

the beautiful theorem by Gabriel, classifying the quivers of �nite type in terms of the root

systems of reection groups. The ultimate goal of the course is to give students a glimpse of

the beauty and unity of this �eld of research, which is today very active in the U.K.





Exercises: Reection groups and root systems

1. Let

E =

(
x =

n+1X
i=1

xi�i 2 Rn+1 j
n+1



(c) Let �; � 2 Rn. Show that s�s� is a rotation of Rn. Hint: decompose Rn = Rf�; �g �
H� \H� and consider s�s� acting on Rf�; �g. If e1; e2 is an orthonormal basis of R2,

write out s� and s� explicit.

4. The hypercube Hn is the n-dimensional analogue of the square (n = 2), or cube (n = 3).

Concretely, we can realize Hn in Rn as the set of points

Hn = fv 2 Rn j � 1 � vi � 1 i = 1; : : : ; ng:

The group of symmetries of Hn is denoted BCn. It is called the hyperoctahedral group.

(i) How many vertices does the Hn have? How about edges, or faces?

(ii) The (n� 1)-dimensional faces of Hn are the copies F�i of Hn�1 given by fv 2 Hn j vi =

�1g. Since BCn permutes these (n � 1)-dimensional faces, it will permute their mid-

points fe�i j i = 1; : : : ; ng, where

e�i = (0; : : : ; 0;�1; 0; : : : ; 0):

Deduce that w is a sign permutation matrix i.e. a matrix where each row has only one

non-zero entry which is either a 1 or �1, and similarly for the columns.

(iii) What is the order of the group BCn?

(iv) The hyperoctahedron is dual to the hypercube. It is de�ned to be

On = fx 2 Rn j (x; v) � 1 for all vertices v of Hng:

Check for n = 2 and n = 3 that one gets the (rotated by �
4
) square and octahedron

respectively.

(v) Show directly from the de�nition that the symmetries of Hn are also symmetries of On.

This shows that W (Hn) � W (On).

(vi) Notice that the e�i are the vertices of On. Deduce that W (On) = BCn.
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Exercises: Quivers

1. A homomorphism between representations. Let M = f(Cvi ; ’�)g and N = f(Cwi ;  �)g be

representations of a quiver Q. Then a homomorphism f : M ! N is a collection of linear

maps fi 2 HomC(Cvi ;Cwi) for each i 2 Q0 such that the diagrams

Cvt(�) Cvh(�)

Cwt(�) Cwh(�)

’�

ft(�) fh(�)

 �

commute for all � 2 Q1. The space of all homomorphisms from M to N is denoted

HomQ(M;N).

(a) Consider the representations

M : C2 C N : C C
(a;b)

(c;d)

x

y

where a; b; c; d; x; y 2 C. If (a; b) = (2; 1), (c; d) = (6; 3), x = 1 and y = 3, construct

a non-zero homomorphism f : M ! N . Are there any homomorphisms f : M ! N

when (a; b) = (2; 2), (c; d) = (6; 4), x = 2 and y = 2 ? In general, what conditions

do a; b; c; d; x and y need to satisfy for HomQ(M;N) to be non-zero? What is the

dimension of HomQ(M;N) in this case?

(b) Recall that the representations of the quiver e1
�

are simply pairs (Cn; A),

where A : Cn ! Cn is an n � n matrix. If M = (Cn; A), show that HomQ(M;M) =

fB : Cn ! Cn j[A;B] = 0g, where [A;B] := AB�BA is the commutator of A and B.

2. Let Q be a quiver. Recall that, for each i 2 Q0, we have de�ned the representation E(i) of

Q.

(a) Show that the representation E(i) is simple.

(b) If Q has no oriented cycles, show that every simple representation equals E(i) for some

i 2 Q0.
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(c) Consider the quiver e1 e2

�

� . Show that the representation C C
3

2 is simple.

3. Let Q be the quiver
e2

e1 e5 e3

e4

�

� 

�

Write down the basis of paths for the path algebra CQ. What is dimCQ?

4. Let Q be the quiver e1 e2 e3
� �

and let

A =

8><>:
0B@ a b c

0 d e

0 0 f

1CA ��� a; b; c; d; e; f 2 C

9>=>;
be the algebra of upper triangular 3 � 3 matrices, where multiplication is just the usual

matrix multiplication. Construct an explicit isomorphism of algebras CQ ��! A.
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Exercises: Gabriel’s Theorem

1. You’ll notice that the positive de�nite Euler graphs are precisely the positive de�nite Coxeter

graphs that are simply laced i.e. have at most one edge between any two vertices. Let

(�;�)C , resp. (�;�)E, be the Coxeter form, resp. the Euler form, associated to a graph �.

(a) Show that if � is simply laced then (�;�)E = 2(�;�)C .

(b) If � is not simply laced, show that there is no � 2 R such that (�;�)E = �(�;�)C .

(c) Show that the symmetric matrix  
2 �m
�m 2

!

corresponding to the Euler graph
m

is positive de�nite if and only if m = 1.

When is it positive semi-de�nite?

(d) By considering the subgraphs
m

with m > 1 of �, show that a non-simply

laced Euler graph is not positive de�nite.

(e) Deduce Theorem 4.8 from Theorem 2.18.

2. Let i 2 Q0 be a sink. Show that S+
i (E(i)) = 0.

3. Consider the representation M given by

C

C C2 C

C



which, under the identi�cation ei 7! �i � �i+1, corresponds to

R+ = fe1; e2; e3; e1 + e2; e2 + e3; e1 + e2 + e3g:

For each of the above dimension vectors construct an explicit indecomposable representation

of Q.
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