Extremal Graph Theory and Flag Algebra Exercises

- 1. Prove that a graph G is bipartite if and only if it contains no odd length cycles.
- 2. Show that if G is a graph with $\chi(G) = k$ then G has at least k edges.
- 3. Prove that for any graph F the

$$\pi(F) = \lim_{n \to \infty} \frac{\exp(n, F)}{n},$$

is well-defined.

- 4. Calculate the Turán density of the Petersen graph.
- 5. If $F = \{K, C, K\}$ what is $\pi(F)$?
- 6. Let G = (V, E) be triangle-free with n vertices and suppose v = V d(v) > 2n/5. Show that G is bipartite.
- 7. Prove that if G = (V, E) is a graph with n = 3 vertices and n / 4 + 1 edges, then G contains at least n / 2 triangles.
 - Can you give an example to show that this is sharp?

85088 h)-F.28246(a)-0.30.765802]TJ14.9582-241?

10. Let $S \cap \mathbb{R}$ with |S| = n and suppose that ||x - y|| 1 for all $x, y \cap S$. Show that

$$T = (x, y)$$
 $S |||x - y|| > \frac{1}{2}$

satisfies |T| = n/3 . (Hint: can you express this as a forbidden subgraph problem?)

Give an example to show that this bound is sharp.

11. Let

$$^{n} = \{(x, x, \dots, x_{n}) \mid x, \dots, x_{n} = 0, \sum_{i=1}^{n} x_{i} = 1\}.$$

Given a graph G=(V,E) with V=[n] and x n , define $\lambda(G,x)=_{ij\in E}x_ix_j$ and $\lambda(G)=\max_{x\in ^n}\lambda(G,x)$.

Suppose that y = (