Graph Theory Basics

A graph is a pair G = (V E), consisting of a set of vertices V and a set of unordered pairs of vertices $E \subseteq V^{(2)}$ called *edges*.

If $v \in V(G)$ then the *neighbourhood* of v is $(v) = \{w : vw \in E(G)\}$. The size of this neighbourhood is the *degree* of v denoted by d(v).

Theorem 1 If G = (V E) is a graph then

$$\sum_{v \in V} d(v) = 2|E|$$

Proof: Consider how many times each edge is counted in the LHS of this equation. $\hfill \Box$

Important examples of graphs include K_n , the complete graph of order n,

$$V(K_n) = [n] := \{1 \ 2 \qquad n\} \qquad E(K_n) = [n]^{(2)} = \{ij : 1 \le i \quad j \le n\}$$

and the cycle of length $n_i C_n$:

.

$$V(C_n) = [n]$$
 $E(C_n) = \{i(i + 1) : 1 \le i \le n - 1\} \cup \{1n\}$

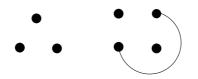


Figure 2: K_3 as a subgraph of K_4

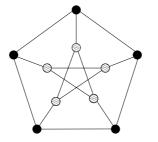


Figure 3: C_5 as a subgraph of the *Petersen graph*

A graph F is a subgraph of a graph G if there is an injective mapping $h : V(F) \to V(G)$ such that for all $uv \in E(F)$ we have $h(u)h(v) \in E(G)$. Moreover if h satisfies $uv \in E(F) \iff h(u)h(v) \in E(G)$ then we say that F is an induced subgraph.

If G has no subgraph that is isomorphic to F then we say G is F-free.

One of the main objectives of extremal graph theory is to calculate how many edges an F-free graph of order n may contain and so we define:

 $ex(n F) = max\{|E(G)| : G \text{ is an } F \text{-free graph of order } n\}$

Often this is too di cult to compute so we instead aim to find the $\mathit{Tur\acute{an}}$ density

$$(F) = \lim_{n \to \infty} \frac{\exp(n F)}{\binom{n}{2}}$$

A k-colouring of a graph G is $c : V(G) \to [k]$ satisfying $uv \in E(G) \implies c(u) \neq c(v)$.

If a k-colouring of G exists we say that G is k-partite. A 2-partite graph is said to be *bipartite*. A special example of a bipartite graph is $K_{r,s}$, the complete bipartite graph with classes of size r and s:

$$V(K_{r,s}) = [r + s]$$
 $E(K_{r,s}) = \{ij : 1 \le i \le r \ r + 1 \le j \le r + s\}$

The chromatic number of G is $(G) = \min\{k : G \text{ is } k\text{-partite}\}$. For example, $(K_t) = t$, while $(C_t) = 2$ if t is even and $(C_t) = 3$ if t is odd.

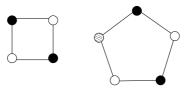


Figure 4: Colouring cycles

A complete k-partite graph is a k